PHYS4150 - PLASMA PHYSICS

LECTURE 16 - COLLISIONS

Sascha Kempf*
G135, University of Colorado, Boulder
Fall 2020

\qquad

Resistivity E field accelerate electrons until collisional friction with ions is large enough to counteract it - electrons reach terminal velocity similar to parachute.

DIFFUSION Collisions with electrons moves the guiding center, so that particle can diffuse from one field line to another.

1 HARD SPHERE COLLISIONS

$$
n=\frac{1}{V}=\frac{1}{\sigma \cdot s}=\frac{1}{\sigma v_{t h} \Delta t}
$$

and thus,

$$
\frac{1}{\Delta t}=\gamma=n \cdot \sigma \cdot v_{t h}
$$

In the general case

$$
\gamma_{\text {coll }}=\frac{1}{\tau_{\text {coll }}}=n\langle\sigma \cdot v\rangle
$$

2 ELECTRON-ION-"COLLSIONS"

Can solve this for general potentials but here we solve for electrons and ions

$$
\begin{aligned}
F & =\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}}=\frac{k}{r^{2}} \\
F_{\perp} & =F \cos \theta=\frac{k}{r^{2}} \cos \theta
\end{aligned}
$$

[^0]and with $r=\frac{b}{\cos \theta}$
$$
F_{\perp}=\frac{k}{b^{2}} \cos ^{3} \theta
$$

Now,

$$
a_{\perp}=\frac{F_{\perp}}{m}=\frac{k}{m b^{2}} \cos ^{3} \theta=\frac{\mathrm{d} v_{\perp}}{\mathrm{d} t}
$$

and

$$
v_{\perp}=\int \frac{\mathrm{d} v_{\perp}}{\mathrm{d} t} d t=\frac{k}{m b^{2}} \int \cos ^{3} \theta d t
$$

How does θ vary with t ?

$$
\tan \theta=\frac{x}{b} \rightarrow x=b \tan \theta
$$

and

$$
v=\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{b}{\cos ^{2} \theta} \frac{\mathrm{~d} \theta}{\mathrm{~d} t}
$$

or

$$
d t=\frac{b}{v \cos ^{2} \theta} d \theta
$$

After collision

$$
\begin{aligned}
& v_{\perp}=\frac{k}{m b^{2}} \int_{-\pi / 2}^{\pi / 2} \cos ^{3} \theta d t=\frac{k}{m b^{2}} \frac{b}{v} \underbrace{\int_{-\pi / 2}^{\pi / 2} \cos \theta d \theta}_{2}=\frac{2 k}{m b v} \\
& v_{\perp}=\frac{e^{2}}{2 \pi \epsilon_{0} m b v}
\end{aligned}
$$

Scatter angle

$$
\sin \Psi=\frac{v_{\perp}}{v}
$$

and for small scatter angles, i.e. $\sin \Psi \approx \Psi$,

$$
\Psi=\frac{e^{2}}{2 \pi \epsilon_{0} m b v^{2}}
$$

Large angle collision occurs if $v_{\perp} / v \approx 1$:

$$
b_{0}=\frac{e^{2}}{2 \pi \epsilon_{0} m v^{2}}
$$

Furthermore, $\Psi=\frac{b}{b_{0}}$ for $\Psi \ll 1$.

Many small angle angular deflections accumulate to make a large angle collision. Because Ψ changes randomly, the electron performs a random walk:

$$
\begin{aligned}
\left\langle\Psi^{2}\right\rangle & =\left\langle\Psi_{1}^{2}\right\rangle+\left\langle\Psi_{2}^{2}\right\rangle+\left\langle\Psi_{3}^{2}\right\rangle+\ldots \\
& =\underbrace{\frac{1}{2}}_{2 \mathrm{D}} \underbrace{N}_{\text {collision \# mean deflection angle }} \underbrace{\left\langle d \Psi^{2}\right\rangle} .
\end{aligned}
$$

Now, to figure out $\left\langle d \Psi^{2}\right\rangle$, we need to know number of collisions per time for fixed b

$$
\begin{aligned}
\frac{\left\langle\Psi^{2}\right\rangle \text { increase }}{\text { unit length }} & =\sum\left(d \Psi^{2} \text { at each } b\right) \times \frac{N \text { at each } \mathrm{b}}{\text { unit length }} \times \frac{1}{2} \\
\frac{\mathrm{~d}}{\mathrm{~d} L}\left\langle\Psi^{2}\right\rangle & =\frac{1}{2} \int\left(\frac{b_{0}}{b}\right)^{2} n 2 \pi b d b \\
& =n \pi b_{0}^{2} \int_{b_{\min }}^{b_{\max }} \frac{d b}{b}=n \pi b_{0}^{2} \ln \left(\frac{b_{\max }}{b_{\min }}\right)
\end{aligned}
$$

$\mathbf{b}_{\mathbf{m i n}}$: for summing over small angles $\Psi \leq 1$, i.e. $b_{\text {min }}=b_{0}$
$\mathbf{b}_{\text {max }}$: Debye shielding cuts off Coulomb force at $b_{\max } \sim \lambda_{D}=\left(\frac{\epsilon_{0} \mathrm{k}_{\mathrm{B}} T}{n e^{2}}\right)^{1 / 2}$

$$
\frac{b_{\max }}{b_{\min }}=\frac{\lambda_{D}}{b_{0}}=\left[\frac{\epsilon_{0} \mathrm{k}_{\mathrm{B}} T}{n e^{2}}\right]^{1 / 2}\left[\frac{2 \pi \epsilon_{0} m v^{2}}{e^{2}}\right]
$$

using $\mathrm{k}_{\mathrm{B}} T=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
\frac{b_{\max }}{b_{\min }} & =\left[\frac{\epsilon_{0} \mathrm{k}_{\mathrm{B}} T}{n e^{2}}\right]^{1 / 2}\left[\frac{\epsilon_{0} \mathrm{k}_{\mathrm{B}} T}{e^{2}}\right] 4 \pi\left(\frac{n}{n}\right) \\
\frac{b_{\max }}{b_{\min }} & =4 \pi n \lambda_{D}^{3}
\end{aligned}
$$

and with

$$
N_{D}=\frac{4}{3} \pi n \lambda_{D}^{3}
$$

we get

$$
\frac{b_{\max }}{b_{\min }}=3 N_{D}=\Lambda .
$$

Introduce the Coulomb logarithm

$$
\ln \frac{b_{\max }}{b_{\min }}=\ln \Lambda
$$

Now,

$$
\frac{\left\langle\Psi^{2}\right\rangle \text { increase }}{\text { unit length }}=\pi n b_{0}^{2} \ln \Lambda .
$$

Define $\lambda_{m f p}$ to be the typical length for an electron to acquire large angle collision $\left\langle\Psi^{2}\right\rangle=1$ from small angle collisions

$$
\frac{\left\langle\Psi^{2}\right\rangle \text { increase }}{\text { unit length }}=\frac{1}{\lambda_{m f p}}=\pi n b_{0}^{2} \ln \Lambda
$$

Obvioulsy

$$
\lambda_{m f p}=\frac{1}{\pi n b_{0}^{2} \ln \Lambda}
$$

has the meaning of a mean free path length for large angle collisions. Now recall that we found for hard sphere collisions that the mean free path is $(n \sigma)^{-1}$, and thus

$$
n \sigma=n \pi b_{0}^{2} \ln \Lambda
$$

From this follows that the cross section for Coulomb collisions is

$$
\sigma=\pi b_{0}^{2} \ln \Lambda
$$

After substituting back $b_{0}=e^{2} / 2 \pi \epsilon_{0} \mathrm{k}_{\mathrm{B}} T$ we get the final expression for the cross section

$$
\sigma=\pi\left(\frac{e^{2}}{2 \pi \epsilon_{0} \mathrm{k}_{\mathrm{B}} T}\right)^{2} \ln \Lambda
$$

Note that σ is independent of the plasma density and scales with temperature as T^{-2}.

[^0]: *sascha.kempf@colorado.edu

